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Introduction

Throughout their life cycle, plants are subjected to various types 
of environmental stresses which include salinity, water deficit, 
temperature extremes, toxic metal ion concentration and UV 
radiation. These environmental factors limit the growth and pro-
ductivity of plants to varying degrees, depending upon severity 
of stress. One of the stress responses in plants is the stimulated 
production of reactive oxygen species (ROS) e.g., OH·, O

2
·, 

H
2
O

2
 etc. These species cause considerable damage through 

peroxidation of membrane lipid components and also through 
direct interaction with various macromolecules. Cells have 
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When exposed to stressful conditions, plants accumulate an 
array of metabolites, particularly amino acids. Amino acids 
have traditionally been considered as precursors to and 
constituents of proteins, and play an important role in plant 
metabolism and development. A large body of data suggests 
a positive correlation between proline accumulation and 
plant stress. Proline, an amino acid, plays a highly beneficial 
role in plants exposed to various stress conditions. Besides 
acting as an excellent osmolyte, proline plays three major 
roles during stress, i.e., as a metal chelator, an antioxidative 
defense molecule and a signaling molecule. Review of the 
literature indicates that a stressful environment results in 
an overproduction of proline in plants which in turn imparts 
stress tolerance by maintaining cell turgor or osmotic balance; 
stabilizing membranes thereby preventing electrolyte 
leakage; and bringing concentrations of reactive oxygen 
species (ROS) within normal ranges, thus preventing oxidative 
burst in plants. Reports indicate enhanced stress tolerance 
when proline is supplied exogenously at low concentrations. 
However, some reports indicate toxic effects of proline when 
supplied exogenously at higher concentrations. In this article, 
we review and discuss the effects of exogenous proline 
on plants exposed to various abiotic stresses. Numerous 
examples of successful application of exogenous proline to 
improve stress tolerance are presented. The roles played by 
exogenous proline under varying environments have been 
critically examined and reviewed.
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adapted different mechanisms to keep the ROS level in check. 
However, low ROS concentration participates in a signal trans-
duction mechanism.1 These ROS are scavenged by low molecular 
weight antioxidative metabolites e.g., glutathione, ascorbic acid, 
α-tocopherol and antioxidative enzymes e.g., catalase, ascorbate 
peroxidase and superoxide dismutase. However, under different 
stress conditions the free radical generation exceeds the overall 
cellular antioxidative potential leading to oxidative stress, which 
contributes to adverse effects on plant growth.

In response to different stresses plants accumulate large quan-
tities of different types of compatible solutes.2 Compatible sol-
utes are low molecular weight, highly soluble organic compounds 
that are usually non-toxic at high cellular concentrations. These 
solutes provide protection to plants from stress by contributing 
to cellular osmotic adjustment, ROS detoxification, protection 
of membrane integrity and enzymes/protein stabilization.3-5 
These include proline, sucrose, polyols, trehalose and quaternary 
ammonium compounds (QACs) such as glycine betaine, alinine 
betaine, proline betaine and pipecolate betaine.6,7

The phenomenon of proline accumulation is known to 
occur under water deficit,8 salinity,9,10 low temperature,11 heavy 
metal exposure12-15 UV radiations, etc. Apart from acting as an 
osmolyte for osmotic adjustment, proline contributes to stabi-
lizing sub-cellular structures (e.g., membranes and proteins), 
scavenging free radicals and buffering cellular redox potential 
under stress conditions.3 It may also act as protein compatible 
hydrotrope,16 alleviating cytoplasmic acidosis and maintaining 
appropriate NADP+/NADPH ratios compatible with metabo-
lism.17 In many plant species, proline accumulation under salt 
stress has been correlated with stress tolerance, and its con-
centration has been shown to be generally higher in salt toler-
ant than in salt sensitive plants.18-21 Its accumulation normally 
occurs in cytoplasm where it functions as molecular chaperons 
stabilizing the structure of proteins and its accumulation buf-
fers cytosolic pH and maintains cell redox status. It has also 
been proposed that its accumulation may be part of a stress sig-
nal influencing adaptive responses. Keeping in view the diverse 
roles of proline in plants, a comprehensive note on biosynthesis, 
transport, signaling and role in stress has been reviewed in this 
article.
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REVIEW

is catalyzed by Δ'-pyrroline-5-carboxylate synthetase (P5CS) and 
Δ'-pyrroline-5-carboxylate reductase (P5CR) (Fig. 1).23 P5CS is 
encoded by two genes whereas P5CR is encoded by only one in 
most plant species.16,24,25 Proline catabolism occurs in mitochon-
dria by means of the chronological action of proline dehydro-
genase or proline oxidase (PDH or POX) producing P5C from 
proline and P5C dehydrogenase (P5CDH) which converts P5C 
to glutamate. Two genes encode PDH, whereas a single P5CDH 

Proline Biosynthesis, Signaling and Transport

The proline biosynthetic pathway was outlined 40 years in 
Escherichia coli.22 In plants, proline is synthesized by two path-
ways viz. glutamate pathway and orinithine pathway. The glu-
tamate pathway accounts for major proline accumulation during 
osmotic stress. The proline is synthesized from glutamatic acid 
via intermediate Δ'-pyrroline-5-carboxylate (P5C). The reaction 

Figure 1. Proline metabolism in higher plants. Solid lines represents biosynthetic pathways while catabolic pathways are shown with dashed lines. 
BAC, basic amino acid transporter (for arginine and ornithine exchange); Glu, glutamate; G/P, mitochondrial glutamate/proline antiporter; KG, 
α-ketoglutarate; P, mitochondrial proline transporter; Pi, inorganic phosphate; ProT, proline transporter; ?, unknown transporters. (Figure adapted 
from Szabados and Savoure).40
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are enzymes of proline metabolism. It has also been revealed 
that Cu-induced proline synthesis and accumulation in detached 
rice leaves was mediated by ABA.46 Zhang et al.47 reported that 
Cu-induced proline synthesis is associated with NO generation. In 
this study the authors reported that exposure of Chlamydomonas 
reinhardtii to increasing concentration of Cu resulted in an 
increased synthesis of proline and a concomitant increase of intra-
cellular NO levels. The authors argued that this intracellular NO 
generation was involved in Cu-induced proline accumulation and 
signaling and this theory was largely based on the fact that the 
application of sodium nitroprusside (a potent NO donor) increased 
the activity and transcript amount of P5CS (a key enzyme of pro-
line biosynthesis) in Cu-treated algae which was blocked if a NO 
scavenger instead of NO donor was used.47 Further, it was reported 
in scenedesmus that the exogenous proline acts by detoxifying the 
ROS generated in response to the heavy metal (Cu or Zn) treat-
ment rather than by improving the antioxidative defense system.48 
Similarly, Wang et al.38 also demonstrated that the protective effect 
of proline against Hg toxicity in rice was through detoxifying ROS 
generated in response to metal treatment.

Effect of Exogenous Proline on Growth  
of Plants under Varying Environments

When exposed to abiotic stress, plants experience growth inhibi-
tion or retardation. However, exogenous application of proline 
provided osmoprotection and also enhanced the growth of plants 
exposed to salt stress.5,49 Roy et al.50 reported that proline, applied 
exogenously at a low concentration, ameliorated the adverse effects 
of salinity in rice. When added to the culture medium at low con-
centrations proline effectively alleviated salinity-induced decline 
in fresh weight and also reduced peroxidative damage to the lipid 
membranes in ground nut (Arachis hypogea); in contrast, higher 
proline concentrations did not prove beneficial.51 In a similar study, 
Ehsanpour and Fatahian52 reported that exogenous application of 
proline to culture medium subjected to salinity stress resulted in an 
increase in dry weight and also increased the free proline content in 
callus cells of alfalfa (Medicago sativa). When applied exogenously 
to immature embryos of maize (Zea mays) proline stimulated 
somatic embryogenesis.53-55 Ali et al.56 reported that the exogenous 
proline applied as spray treatment at seedling and/or at vegeta-
tive stage of Zea mays resulted in enhanced growth under water 
deficient environment. Proline applied as pre-sowing seed soaking 
treatment alleviated the adverse effects generated by drought stress 
in Triticum aestivum resulting in enhanced growth and yield char-
acteristics.57 Exogenous application of proline enhanced growth 
and also maintained nutrient status by promoting the uptake of 
K+, Ca+, P and N in Zea mays plants exposed to drought stress.58 
Exogenous application of proline mitigated the cadmium induced 
inhibitory effects on the growth of cultured tobacco Bright 
Yellow-2 (BY-2) cells (Fig. 2).59

Effect of Exogenous Proline on Plant-Water 
Relations and Photosynthesis

gene has been identified in Arabidopsis and tobacco (Nicotiana 
tabacum).26-29 PDH transcription is activated by rehydration but 
repressed by dehydration, thus preventing proline degradation 
during abiotic stress.27,28 In an alternative pathway, proline can 
be synthesized from ornithine, which is transaminated to P5C 
by orinithine-δ-aminotransferase.30 It has been suggested that 
the ornithine pathway is important during seedling development 
and in some plants for stress-induced proline accumulation.24,31,32 
Accumulation of proline has been suggested to contribute to stress 
tolerance in many ways. As proline acts as the molecular chap-
eron it is able to maintain the protein integrity and enhance the 
activities of different enzymes.33 Numerous studies have reported 
proline as an antioxidant suggesting its role as ROS scavenger 
and singlet oxygen quencher.34,35

Exogenous proline application reduces ROS levels in fungi 
and yeast, thus preventing programmed cell death,36 and also 
prevents lipid peroxidation in alga cells exposed to heavy met-
als.37 Pretreatment of proline also mitigated Hg2+ toxicity in 
rice (Oryza sativa) through ROS scavenging, such as H

2
O

2
.38 

Damaging effects of ROS on Photosystem II (PSII) can be 
reduced by proline in isolated thylakoid membranes (PSII).39

Internal proline content can be determined by biosynthesis, 
catabolism and transport between cells and different cellular com-
partments. The biosynthetic enzymes (P5CS1, P5CS2 and P5CR) 
are predicted to be localized in the cytosol whereas a mitochon-
drial localization is predicted for the enzymes involved in proline 
catabolism (such as PDH1/ERD5, PDH2, P5CDH and OAT).40

Intercellular transport of proline occurs between cytosol, chlo-
roplasts and mitochondria as implied by compartmentalization 
of proline metabolism (Fig. 1). It has been reported that uptake 
of proline in mitochondria is an active process suggesting the 
existence of specific amino acid transporters.41 These transport-
ers have been identified in Arabidopsis thaliana42 and in tomato 
pollen.43 At least three transporters (Pro T1, Pro T2 and AAP

6
) of 

proline were identified in Arabidopsis thaliana based on C-DNA 
technology.42 These transporters belong to the amino acid perme-
ase (AAP) family and are expressed during stressful conditions. 
Pro T1 expresses ubiquitously but in Arabidopsis thaliana plants 
exposed to salinity stress, higher levels of Pro T1 were recorded 
in roots, stems and flowers. Young flowers showed highest expres-
sion, particularly in floral stalk phloem. Under water or salinity 
stress, strong expression of Pro T2 was recorded whereas, AAP6 
transcripts were detected mainly in sink tissues (roots, cauline 
leaves).42 In the halophyte species Limonium latifolium, proline 
was sequestered to vacuoles in non-stressed plants, whereas, high 
proline content was detected in the cytosol of salt-stressed plants, 
suggesting the importance of de novo proline biosynthesis as well 
as transport for proline accumulation.44

Proline metabolism has been studied for more than 40 y in plants, 
but little is known about the signaling pathways involved in its reg-
ulation. The proline biosynthetic pathway is activated and its catab-
olism repressed during dehydration, whereas rehydration regulates 
in the opposite direction.16,26-28,32,45 Chen et al.46 indicated that pro-
line accumulation in detached rice leaves upon exposure to excess 
Cu was due to proteolysis and increased activities of Δ1-pyrroline-
5-carboxylate reductase or ornithine-δ-aminotransferase, which 
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concentrations of exogenous proline were even more effective in 
increasing stomatal resistance than that of ABA spray.72 In the 
study by Rajagopal and Sinha,73 exogenously applied proline 
maintained turgidity in leaves of barley and wheat undergoing 
stress.

Effect of Exogenous Proline on Oxidative Stress  
and the Antioxidant System

Plants continuously synthesize the reactive oxygen species (ROS) 
as a byproduct of various metabolic pathways.74 ROS play a 
significant role in providing protection against harmful patho-
gens.75-77 They are also important in trachiary element forma-
tion, lignification and several other developmental processes.78-80 
However, excessive levels of ROS result in oxidative damage to 
plants, e.g., nucleic acid damage, oxidation of proteins and lip-
ids and degradation of chlorophyll pigments.81-84 Therefore, ROS 
generation should remain within plant-compatible limits. Under 
normal conditions ROS are scavenged by different antioxidant 
defense compounds.85 However, when plants are exposed to 
various biotic and abiotic stresses increased generation of ROS 
occurs.86-88 This increased ROS level, besides causing the afore-
said damage, also causes K+ efflux from cells (Fig. 2).89

Stress, in general, is known to alter plant-water relations60 which 
may affect water uptake, ascent of sap, stomatal functioning61 
and retardation of chlorophyll biosynthesis62 and ultimately 
results in decreased photosynthesis. Decrease in leaf water poten-
tial is also associated with stress. The disturbance in plant-water 
relations due to heavy metal exposure triggers proline accumula-
tion; this effect has been observed, for example, in response to Cd 
in Lectuca sativa.63 Exogenous proline application to Vicia faba 
significantly increased leaf water potential during salinity stress.64 
The exogenous proline supplemented mitigated the reduction in 
photosynthetic activity and leaf water relations under salt stress in 
Olea europaea L. cv Chemlali, and the mitigating effect of proline 
was concentration-dependent.65 It is well-established that proline 
protects plants against stress by stabilizing the mitochondrial 
electron transport complex II,66 membranes and proteins8,67-70 and 
enzymes such as RUBISCO.71 When compared with other osmo-
lytes such as glycine betaine, proline applied exogenously was 
highly effective in alleviating NaCl-generated stress in tobacco 
cells.3 Both upper and lower stomata in Vicia faba responded to 
different concentrations of proline supplied exogenously either 
to detached leaves or to intact leaves.72 The stomata on abaxial 
surfaces exhibited higher resistance than those on adaxial sur-
faces when treated exogenously with proline. Furthermore, lower 

Figure 2. Proline mediated intracellular redox-regulation as a multifaceted convergent strategy of different stresses. A balance of exogenous/endog-
enous molecules sets the required internal concentration of proline.
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Effect of Exogenous Proline on Plants Exposed to 
Radiation Stress

Harmful radiation such as UV-B (280–320 nm) is an impor-
tant environmental factor which at higher levels adversely 
affects photosynthesis and other physiological processes.71,101 In 
response to UV-B radiation plants develop a variety of protec-
tive mechanisms, e.g., production of UV-B screening pigments 
and synthesis of protective compounds including flavonoids 
and proline.80,102,103 The free radicals generated in response to 
UV-B exposure are scavenged by proline.103,104 The study by 
Arora and Saradhi104 was further supported by the finding that 
barley seedlings pretreated with NaCl were more resistant to 
UV-B radiation. This increased tolerance to UV-B exposure 
was probably due to proline accumulation induced by salt 
stress conditions.105 In addition, exogenous proline applica-
tion to barley seedlings followed by UV-B exposure resulted 
in reduced chlorophyll/carotenoid ratio, oxygen evolution rate 
and photochemical efficiency of PS II, and also increased pro-
line accumulation.106 The reduced chlorophyll/carotenoid ratio 
by exogenous proline application was due to synthesis of pig-
ments that provided protection to cells against UV-B radiation 
exposure (Fig. 2).106

Effect of Exogenous Proline on Plants Exposed  
to Temperature Stress

Deviation from optimum temperature results in serious pertur-
bations in plant growth and development. These perturbations 
include disruption of membranes due to lipid peroxidation, 
metabolic modifications, changes in protein content and enzy-
matic activity, and electrolyte and amino acid leakage from cells. 
Application of chilling treatment to tropical and subtropical 
plants such as mung bean and soybean resulted in serious physi-
ological and biochemical dysfunctions, most of which are medi-
ated by ROS.88

Chilling sensitive seeds which are vulnerable to low tempera-
tures during the early phase of imbibition result in decrease in 
percent germination,107-109 poor seedling growth and reduced 
plant productivity.108 Hare et al.110 observed that seed germina-
tion in Arabidopsis thaliana was enhanced by proline applied 
exogenously. An increase in plant growth111 and crop productiv-
ity112 under chilling stress conditions was also observed when pro-
line was applied exogenously (Fig. 2).

Studies have revealed that the oxidative pentose phosphate 
pathway (OPPP) plays a critical role in triggering seed germina-
tion in various plant species. Botha et al.113 and Shetty114 sug-
gested a link between OPPP and proline biosynthesis. This was 
further confirmed by Posmyk and Janas,115 who found a positive 
correlation between endogenous proline content in seeds and ger-
mination when exposed to chilling stress.

Seed germination in Vigna radiata, inhibited by applica-
tion of chilling stress of 5°C, was overcome when seeds were 
hydroprimed with proline. Further exogenous proline application 
had a dose-dependent stimulatory effect on germination of Vigna 
radiata seeds.115 This effect of exogenous proline was attributed to 

Reports indicate that proline is responsible for scavenging the 
ROS and other free radicals.35,36,90-94 Proline, when applied exoge-
nously to roots of Arabidopsis, resulted in a reduced level of ROS, 
indicating the ROS scavenging potential of proline.95 Further, 
exogenous proline application also reduced ROS-induced K+ 
efflux.95 Hoque et al.96 reported that the activities of antioxidative 
enzymes viz. catalase (CAT), peroxidase (POX) and superoxide 
dismutase (SOD) were significantly enhanced when proline was 
applied exogenously in tobacco suspension cultures exposed to 
salinity stress.

Another important defense system of plants to protect cells 
against the destructive ROS (i.e., those generated in response to 
stress) is the ascorbate-glutathione (ASC-GSH) cycle.93 Exogenous 
proline application upregulates the activities of enzymes in the 
ASC-GSH cycle. The activities of APX (ascorbate peroxidase), 
MDHAR (monohydro ascorbate reductase) and DHAR (dihydro 
ascorbate reductase) enzymes, which are the components of ASC-
GSH cycle, were significantly enhanced by exogenous proline 
application in tobacco cultures exposed to salinity stress (Hoque 
et al. 2007). Kaul et al.97 using in vitro studies, showed that exog-
enously applied l-proline proved to be a potent free radical (par-
ticularly ROS) scavenger. Hong et al.91 concluded that the role of 
proline as a free radical scavenger is more important in alleviating 
stress than its role as a simple osmolyte. Islam et al.59 showed that 
proline and betaine confer tolerance to cadmium stress in cultured 
tobacco cells by increasing the activities of SOD and CAT and also 
decreased the lipid peroxidation rate (Fig. 2).

Effect of Exogenous Proline on Plants Exposed  
to Salinity Stress

High salinity is a major problem faced by plants worldwide, 
which results in serious metabolic perturbations reducing crop 
productivity and yield. Salinity stress reduced growth and pro-
tein content in Pancratium maritium. This effect was, however, 
significantly reversed when proline was exogenously supplied.98 
Furthermore, the salinity-induced reduction in ubiquitin conju-
gate content and inhibition of the antioxidative enzymes catalase 
and peroxidase was significantly overcome in Pancratium mari-
timum when proline was supplied exogenously.98 In a study per-
formed by Gadallah,64 exogenous proline application completely 
alleviated salinity-induced injury in Vicia faba. The membrane 
disruptions induced by salinity were also alleviated by exogenous 
proline in Vicia faba.64 In the same study, exogenous proline appli-
cation increased leaf chlorophyll content, leaf relative water con-
tent and overall plant growth. Exogenous proline application also 
increased percentage germination and root length in pea exposed 
to salinity stress.99 In a study by Ehsanpour and Fatahian52 on cal-
lus cells of Medicago sativa, proline supplied exogenously to the 
culture medium subjected to salinity stress resulted in an increase 
in dry weight and also increased free proline content in the callus 
cells. Exogenous addition of proline to nutrient medium drasti-
cally decreased the oxidative damage to membranes caused by 
salinity in Mesembryanthemum crystallinum L. thus resulting in 
reduced lipid peroxidation rate but increased the chlorophyll con-
tent in the leaves of salt stressed plants.100
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counteract lipid peroxidation as well as K+ efflux observed after 
exposure to Cu, Cr, Ni and Zn.37 Regardless of the above data, a 
survey of the literature indicates that generally little information 
is available on the effect of exogenous proline on plants exposed 
to heavy metal stress.

Effect of Exogenous Proline on Other Enzymes  
and Metabolites

Exogenous proline application, besides enhancing the activity of 
antioxidative enzymes (CAT, POX and SOD),96 is also known 
to enhance the activity of other enzymes. Nitrogenase activity 
in drought-stressed soybean nodules was significantly enhanced 
when proline (an osmolyte) was applied exogenously. However, 
when other osmolytes such as malate were tested there was no 
significant enhancement in drought-stressed nodule nitrogenase 
activity.130 Proline is known to act as an enzyme protectant dur-
ing abiotic stress conditions.131,132 This effect is further supported 
by the finding that exogenous proline application alleviated salt 
stress by upregulating the stress protective proteins in Pancratium 
maritinmum98 and reducing oxidation of lipid membranes in 
tobacco.94

It is well-established that stress results in increased proline 
accumulation in root nodules. Kohl et al.133 reported that drought 
stress induced the activity of the enzymes of proline metabolism 
such as proline dehydrogenase (pro-DH) in bacteroids, suggesting 
that proline may be imported to the symbiosomes as a substrate 
for bacteroids during periods of stress. This finding was further 
confirmed by the observation that proline, when applied exog-
enously to the drought-stressed soybean nodules, was imported 
across the symbiosome membrane at a relatively faster rate, which 
was metabolized by the bacteroids and used to enhance nitroge-
nase activity in the nodules.130 In addition proline protected the 
enzymes against heat, salinity or chilling stress under in vitro con-
ditions.134,135 This is due to the fact that the 3-D structure of pro-
teins is governed by hydrophobic/hydrophilic, ionic interactions 
and interactions between side chains of constituent amino acids. 
Proline could interfere with these side chain bonds and induce 
conformational changes in the enzyme protein and thus affect 
their activity (Fig. 2).135,136

Gadallah64 reported that the contents of soluble sugars, hydro-
lysable sugars and soluble proteins of salt-stressed Vicia faba signif-
icantly increased when proline was supplied exogenously. Posmyk 
and Janas115 reported that Vigna radiata seedlings exposed to 
chilling stress when supplied exogenously with proline resulted in 
an increase in phenolics content. Phenolics like endogenous pro-
line act as a free radical scavenger thereby overcoming oxidative 
stress.137,138

Exogenous Proline—A Comparison with Other Amino 
Acids

Accumulation of large quantities of proline is an adaptive response 
of plants to various biotic and abiotic stresses.139-145 Singh et al.146 
was probably the first to assign a correlation between proline accu-
mulation and drought resistance in barley cultivars.147 However, 

membrane stabilizing potential34 which was changed from porous 
and leaky to stable and non-leaky.116

Lipid peroxidation induced by chilling117 was effectively 
overcome by exogenous proline application in Vigna radiata.115 
Exogenous proline acted as an active oxygen scavenger thereby 
overcoming the oxidative stress induced by chilling.115 Van Swaaij 
et al.118 determined that exogenous proline application resulted in 
increased frost tolerance in leaves of Solanum. Exogenous proline 
treatment also increased leaf proline content, thereby alleviating 
chill-induced stress. Besides acting as a free radical scavenger and 
stabilizing membranes, exogenous proline also acted as a source 
of nitrogen and carbon, thereby improving seedling growth and 
regeneration in Vigna radiata exposed to chilling stress.115

Effect of Exogenous Proline on Plants Exposed  
to Heavy Metal Stress

Heavy metals such as Cd, Cu, Pb, Ni and Zn are common and 
destructive environmental threats encountered by plants. Plant 
uptake of excessive concentrations of heavy metals generates stress 
resulting in serious physiologic and structural disturbances. In 
response to heavy metal stress plants accumulate a large quantity 
of proline. Many plants have been shown to accumulate proline 
when exposed to heavy metal stress.12,13,63,119,120 Besides acting as 
an osmoprotectant and ROS quencher, proline also acts as a heavy 
metal chelator, thereby alleviating heavy metal stress.121 Proline 
induces the formation of phytochelatins which chelate with heavy 
metals like Cd thereby decreasing their toxicity.122 Xu et al.123 
reported that proline pre-treatment reduced the ROS level and 
also protected the plasma membrane of callus subjected to cad-
mium stress, thereby improving the cadmium tolerance resulting 
in regeneration of shoots in Solanum nigrum. Exogenous applica-
tion of proline resulted in increase of its endogenous levels that 
antagonized the toxic effects of selenium by improving the growth 
of seedlings. Damage caused by stress was reduced significantly 
with simultaneous increase in the activities of enzymatic and non- 
enzymatic antioxidants.124 Heavy metal-tolerant populations of 
Deschampsia and Silene have been shown to contain a higher con-
stitutive content of proline as compared with non-tolerant coun-
terparts.14,125 In a study performed by Sharma et al.126 exogenous 
proline protected the activity of glucose-6-phosphate dehydroge-
nase and nitrate reductase in vitro against inhibition by Cd and 
Zn. This protection was due to the formation of a proline-metal 
complex.126 Similar complex-forming properties of proline were 
observed by Farago and Mullen121 where proline formed a com-
plex with Cu in metal-tolerant Armaria (Fig. 2).

Research has demonstrated heavy metal-induced proline accu-
mulation in higher as well as in lower plants. Enhanced proline 
accumulation was noted in response to heavy metals like Cd, 
Co, Zn and Pb in Cajanus cajan and Vigna mungo;119 Pb, Cd, 
Cu and Zn in Helianthus annuus;127 and Zn and Cu in Triticum 
aestivum.13 Proline accumulation in response to heavy metal expo-
sure has been observed in lower plants, e.g., algae. Proline accu-
mulated when different algae were exposed to metals such as Cu 
in Anacystis nidulans,128 Chlorella sp.129 and Chlorella vulgaris.37 
Exogenous proline application to Chlorella vulgaris was found to 
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this toxic effect of exogenous proline is attributed to the fact that 
lower concentrations activated a cycle of cytosolic proline synthe-
sis from glutamate and mitochondrial proline degradation, which 
simultaneously provided NADP+ to drive cytosolic purine biosyn-
thesis and reducing equivalents for mitochondrial ADP phosphor-
ylation.161 An induction by exogenous proline of the Arabidopsis 
gene which encodes proline dehydrogenase (PDH)27 is consistent 
with this hypothesis. However, at higher levels of exogenous pro-
line, feedback inhibition of Δ1-pyroline-5-carboxylate synthetase 
(P5CS)162,163 blocked the biosynthetic portion of this cycle and 
thereby inhibited organogenesis, as in Arabidopsis.160 The toxic 
effects of exogenous proline were also observed by Rodriguez 
and Heyser164 where growth in suspension culture of saltgrass 
(Distichlis spicata) was inhibited when proline was applied exog-
enously at a high concentration. This treatment also decreased 
proline biosynthesis.

Chen and Kao165 suggest that high concentrations of proline 
mimic the toxic effects of Cd in rice seedlings. Nanjo et al.166 eval-
uated proline toxicity in Arabidopsis T-DNA tagged mutant pdh 
that was defective in pro dehydrogenase (At ProDH), responsible 
for catalyzing the first step of proline catabolism. This pdh mutant 
was hypersensitive to exogenous l-proline at concentrations < 10 
mM whereas the wild type grew normally at such concentrations.

Besides the above toxic effects of exogenous proline, it has 
been shown to destabilize the DNA helix, lower the DNA melting 
point, increase susceptibility to S1 nuclease and increase insensi-
tivity to DNAase1, when supplied at high concentrations.33

Summary and Conclusions

1. Proline, an amino acid, plays an important role in plants. It 
protects the plants from various stresses and also helps plants to 
recover from stress more rapidly.

2. When applied exogenously to plants exposed to stress, 
Proline results in enhanced growth and other physiological char-
acteristics of plants.

3. Exogenous proline scavenges the ROS generated in plants 
under various biotic and abiotic stresses.

4. Exogenous proline application affects plant-water relations 
by maintaining turgidity of cells under stress, and also increases 
the rate of photosynthesis.

5. Exogenous proline application to plants protects them from 
harmful radiation such as UV-B.

6. Low concentrations of exogenous proline protect plants 
from salinity, drought and temperature stress. However, higher 
doses will impart toxic effects.

Despite the diverse physio-morphological effects of exogenous 
proline on plants, much work is still required for a more com-
plete understanding of its effects on plant response to external 
stress. Keeping in view the potential of exogenous proline as a 
ROS scavenger, it may become a useful tool to counter the adverse 
effect of stressful environments thereby decreasing annual losses 
to agriculture.
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reports have shown accumulation of other free amino acids under 
stress conditions e.g., aspartic acid, glutamic acid and gluta-
mine in cotton;148 asparagine, aspartic acid, serine and glycine in 
maize149,150 and ornithine, arginine and glutamic acid in detached 
rice leaves.151

Proline administered exogenously in nutrient solution to 
wheat exposed to osmotic stress delayed wilting.73 Subsequently 
Rajagopal72 showed that in Vicia faba exogenous proline decreased 
stomatal conductance and also increased uptake of exogenous 
proline into leaves. However, Thakur and Rai152 observed that 
exogenous application of alanine, serine and asparagine also 
delayed wilting under stress conditions in maize. Exogenous 
proline inhibited stomatal opening in Vicia faba whereas other 
amino acids such as histidine, methionine, aspartic acid, glutamic 
acid, asparagine and gutamine promoted stomatal opening.153 Rai 
and Kumari154 monitored the passage of H+ or OH- ions across 
the Vinca petal membrane and observed that exogenous proline 
decreased membrane permeability for H+ or OH- ions. A similar 
response was generated when arginine, asparagine, glutamine, ala-
nine and leucine were tested.

Exogenous proline application to Phaseolus seedlings pro-
moted calcium uptake whereas alanine, aspartic acid, glutamic 
acid and tryptophan inhibited Ca uptake.155 Like proline the 
amino acids histidine, γ-amino butyric acid, hydroxy proline, leu-
cine, glutamine and phenylalanine enhanced K+ uptake. However, 
threonine, aspartic acid and alanine did not affect K+ uptake.

Santos et al.156 reported that exogenous proline acts as a nitro-
gen source. They concluded that diverse morphogenetic processes 
such as embryogenesis and organogenesis vary in their demand 
of exogenous nitrogen (especially in the form of proline) which 
would also act as an osmoregulator. Seed germination in Sinapis 
alba was least inhibited by proline when applied exogenously at a 
concentration of 3.5x10-2 M whereas, at the same concentration, 
alanine, glutamic acid and aspartic acid proved highly inhibi-
tory.157 The authors also indicated that proline was about 300 
times more soluble in water than other amino acids and thus acted 
as a comparatively non-toxic osmolyte. Proline level declined in 
response to nitrogen deficiency in Phaseolus vulgaris because of the 
stimulation of proline dehydrogenase. However, under the con-
ditions of adequate nitrogen, proline level increased due to the 
activation of ornithine δ-aminotransferase.158

Proline Toxicity in Plants

Despite the beneficial effects of exogenous proline application, 
it imparts toxic effects as well if over-accumulated or applied at 
excessive concentrations. Such negative effects of exogenous pro-
line were observed in tomato, where an imbalance in inorganic 
ions was observed.159 Proline applied exogenously at a low concen-
tration (e.g., 30 mM) ameliorated the adverse effects of salinity 
on early seedling growth in rice, whereas at higher concentra-
tions (40–50 mM) proline resulted in toxic effects and poor plant 
growth.50 In a study by Hare et al.,160 it was shown that proline 
applied exogenously at a low concentration enhanced in vitro 
shoot organogenesis in Arabidopsis hypocotyls explants, whereas 
growth was inhibited at higher concentrations. An explanation for 
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